Research Articles|108 Article(s)
Research Articles
Suppressing neuroinflammation using the near-infrared light emitted by (Sr,Ba)Ga12O19: Cr3+ phosphor
Qi Liu, Fangmei Yu, Hossein Chamkouri, Yanguang Guo, Ping Chen, Bo Wang, Dongwei Liu, and Lei Chen
Neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, affect the elderly worldwide and will become more prevalent as the global population ages. Neuroinflammation is a common characteristic of neurodegenerative diseases. By regulating the phenotypes of microglia, it is possible to suppress neuroinflammation and, in turn, help prevent neurodegenerative diseases. We report a noninvasive photonic approach to regulating microglia from overexcited M1/M2 to the resting M0 phenotype using a special near-infrared (NIR) light emitted by the SrGa12O19 : Cr3 + phosphor. The absorbance and internal and external quantum efficiencies of the optimal Sr ( Ga0.99Cr0.01)12O19 phosphor synthesized at 1400°C for 8 h using 1 % H3BO3 + 1 % AlF3 as flux are 53.9 % , 99.2 % , and 53.5 % ; the output power and energy-conversion efficiency of the LED device packaged using the optimal SrGa12O19 : Cr3 + phosphor driven at 20 mA reach unprecedentedly 19.69 mW and 37.58 % , respectively. The broadband emission of the NIR LED device covers the absorption peaks of cytochrome c oxidase well, and the NIR light can efficiently promote the proliferation of microglia, produce adenosine triphosphate (ATP), reverse overexcitation, alleviate and inhibit inflammation, and improve cell survival rate and activity, showing great prospects for photomedicine application.
Advanced Photonics Nexus
  • Publication Date: May. 08, 2024
  • Vol. 3, Issue 3, 036008 (2024)
Beyond 200-Gb/s O-band intensity modulation and direct detection optics with joint look-up-table-based predistortion and digital resolution enhancement for low-cost data center interconnects
Qi Wu, Zhaopeng Xu, Yixiao Zhu, Tonghui Ji, Honglin Ji, Yu Yang, Junpeng Liang, Chen Cheng, Gang Qiao, Zhixue He, Jinlong Wei, Qunbi Zhuge, and Weisheng Hu
We propose a joint look-up-table (LUT)-based nonlinear predistortion and digital resolution enhancement scheme to achieve high-speed and low-cost optical interconnects using low-resolution digital-to-analog converters (DACs). The LUT-based predistortion is employed to mitigate the pattern-dependent effect (PDE) of a semiconductor optical amplifier (SOA), while the digital resolution enhancer (DRE) is utilized to shape the quantization noise, lowering the requirement for the resolution of DAC. We experimentally demonstrate O-band intensity modulation and direct detection (IM/DD) transmission of 124-GBd 4 / 6-level pulse-amplitude modulation ( PAM ) -4 / 6 and 112-GBd PAM-8 signals over a 2-km standard single-mode fiber (SSMF) with 3 / 3.5 / 4-bit DACs. In the case of 40-km SSMF transmission with an SOA-based preamplifier, 124-GBd on-off-keying (OOK)/PAM-3/PAM-4 signals are successfully transmitted with 1.5 / 2 / 3-bit DACs. To the best of our knowledge, we have achieved the highest net data rates of 235.3-Gb / s PAM-4, 289.7-Gb / s PAM-6, and 294.7 Gb / s PAM-8 signals over 2-km SSMF, as well as 117.6-Gb / s OOK, 173.8-Gb / s PAM-3, and -231.8 Gb / s PAM-4 signals over 40-km SSMF, employing low-resolution DACs. The experimental results reveal that the joint LUT-based predistortion and DRE effectively mitigate the PDE and improve the signal-to-quantization noise ratio by shaping the noise. The proposed scheme can provide a powerful solution for low-cost IM/DD optical interconnects beyond 200 Gb / s.
Advanced Photonics Nexus
  • Publication Date: Apr. 24, 2024
  • Vol. 3, Issue 3, 036007 (2024)
Nonlinear localization of ultracold atomic Fermi gas in moiré optical lattices
Xiuye Liu, and Jianhua Zeng
Moiré superlattices, a twisted functional structure crossing the periodic and nonperiodic potentials, have recently attracted great interest in multidisciplinary fields, including optics and ultracold atoms, because of their unique band structures, physical properties, and potential implications. Driven by recent experiments on quantum phenomena of bosonic gases, the atomic Bose–Einstein condensates in moiré optical lattices, by which other quantum gases such as ultracold fermionic atoms are trapped, could be readily achieved in ultracold atom laboratories, whereas the associated nonlinear localization mechanism remains unexploited. Here, we report the nonlinear localization theory of ultracold atomic Fermi gases in two-dimensional moiré optical lattices. The linear Bloch-wave spectrum of such a twisted structure exhibits rich nontrivial flat bands, which are separated by different finite bandgaps wherein the existence, properties, and dynamics of localized superfluid Fermi gas structures of two types, gap solitons and gap vortices (topological modes) with vortex charge S = 1, are studied numerically. Our results demonstrate the wide stability regions and robustness of these localized structures, opening up a new avenue for studying soliton physics and moiré physics in ultracold atoms beyond bosonic gases.
Advanced Photonics Nexus
  • Publication Date: Apr. 24, 2024
  • Vol. 3, Issue 3, 036006 (2024)
PC-bzip2: a phase-space continuity-enhanced lossless compression algorithm for light-field microscopy data
Changqing Su, Zihan Lin, You Zhou, Shuai Wang, Yuhan Gao, Chenggang Yan, and Bo Xiong
Light-field fluorescence microscopy (LFM) is a powerful elegant compact method for long-term high-speed imaging of complex biological systems, such as neuron activities and rapid movements of organelles. LFM experiments typically generate terabytes of image data and require a substantial amount of storage space. Some lossy compression algorithms have been proposed recently with good compression performance. However, since the specimen usually only tolerates low-power density illumination for long-term imaging with low phototoxicity, the image signal-to-noise ratio (SNR) is relatively low, which will cause the loss of some efficient position or intensity information using such lossy compression algorithms. Here, we propose a phase-space continuity-enhanced bzip2 (PC-bzip2) lossless compression method for LFM data as a high-efficiency and open-source tool that combines graphics processing unit-based fast entropy judgment and multicore-CPU-based high-speed lossless compression. Our proposed method achieves almost 10% compression ratio improvement while keeping the capability of high-speed compression, compared with the original bzip2. We evaluated our method on fluorescence beads data and fluorescence staining cells data with different SNRs. Moreover, by introducing temporal continuity, our method shows the superior compression ratio on time series data of zebrafish blood vessels.
Advanced Photonics Nexus
  • Publication Date: Apr. 16, 2024
  • Vol. 3, Issue 3, 036005 (2024)
Frequency-dependent selectively oriented edge state topological transport
Jiajun Ma, Chunmei Ouyang, Yuting Yang, Xinyue Qian, Li Niu, Yi Liu, Quan Xu, Yanfeng Li, Zhen Tian, Jianqiang Gu, Jiaguang Han, and Weili Zhang
Valley topological photonic crystals (TPCs), which are robust against local disorders and structural defects, have attracted great research interest, from theoretical verification to technical applications. However, previous works mostly focused on the robustness of topologically protected edge states and little attention was paid to the importance of the photonic bandgaps (PBGs), which hinders the implementation of various multifrequency functional topological photonic devices. Here, by systematically studying the relationship between the degree of symmetry breaking and the working bandwidth of the edge states, we present spoof surface plasmon polariton valley TPCs with broadband edge states and engineered PBGs, where the operation frequency is easy to adjust. Furthermore, by connecting valley TPCs operating at different frequencies, a broadband multifunctional frequency-dependent topological photonic device with selectively directional light transmission is fabricated and experimentally demonstrated, achieving the functions of wavelength division multiplexing and add–drop multiplexing. We provide an effective and insightful method for building multi-frequency topological photonic devices.
Advanced Photonics Nexus
  • Publication Date: Apr. 17, 2024
  • Vol. 3, Issue 3, 036004 (2024)
Integrated coherent beam combining system for orbital-angular-momentum shift-keying-based free-space optical links
Bowang Shu, Yuqiu Zhang, Hongxiang Chang, Shiqing Tang, Jinyong Leng, and Pu Zhou
Orbital-angular-momentum (OAM) multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links. The coherent beam combining (CBC) system can simultaneously realize OAM multiplexing and achieve high-power laser output, providing substantial advantages for long-distance communication. Herein, we present an integrated CBC system for free-space optical links based on OAM multiplexing and demultiplexing technologies for the first time, to the best of our knowledge. A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally. The experimental results exhibit a low bit error rate of 0.47% and a high recognition precision of 98.58% throughout the entire data transmission process. By employing such an ingenious strategy, this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.
Advanced Photonics Nexus
  • Publication Date: Apr. 15, 2024
  • Vol. 3, Issue 3, 036003 (2024)
Single-wavelength size focusing of ultra-intense ultrashort lasers with rotational hyperbolic mirrors
Zhaoyang Li, Yanqi Liu, Xiaoyang Guo, Yuxin Leng, and Ruxin Li
Compressing all the energy of a laser pulse into a spatiotemporal focal cube edged by the laser center wavelength will realize the highest intensity of an ultra-intense ultrashort laser, which is called the λ3 regime or the λ3 laser. Herein, we introduced a rotational hyperbolic mirror—an important rotational conic section mirror with two foci—that is used as a secondary focusing mirror after a rotational parabolic mirror to reduce the focal spot size from several wavelengths to a single wavelength by significantly increasing the focusing angular aperture. Compared with the rotational ellipsoidal mirror, the first focal spot with a high intensity, as well as some unwanted strong-field effects, is avoided. The optimal focusing condition of this method is presented and the enhanced tight focusing for a femtosecond petawatt laser and the λ3 laser is numerically simulated, which can enhance the focused intensities of ultra-intense ultrashort lasers for laser physics.
Advanced Photonics Nexus
  • Publication Date: Mar. 29, 2024
  • Vol. 3, Issue 3, 036002 (2024)
Split Lohmann computer holography: fast generation of 3D hologram in single-step diffraction calculation
Chenliang Chang, Xian Ding, Di Wang, Zhizhou Ren, Bo Dai, Qi Wang, Songlin Zhuang, and Dawei Zhang
Holographic display stands as a prominent approach for achieving lifelike three-dimensional (3D) reproductions with continuous depth sensation. However, the generation of a computer-generated hologram (CGH) always relies on the repetitive computation of diffraction propagation from point-cloud or multiple depth-sliced planar images, which inevitably leads to an increase in computational complexity, making real-time CGH generation impractical. Here, we report a new CGH generation algorithm capable of rapidly synthesizing a 3D hologram in only one-step backward propagation calculation in a novel split Lohmann lens-based diffraction model. By introducing an extra predesigned virtual digital phase modulation of multifocal split Lohmann lens in such a diffraction model, the generated CGH appears to reconstruct 3D scenes with accurate accommodation abilities across the display contents. Compared with the conventional layer-based method, the computation speed of the proposed method is independent of the quantized layer numbers, and therefore can achieve real-time computation speed with a very dense of depth sampling. Both simulation and experimental results validate the proposed method.
Advanced Photonics Nexus
  • Publication Date: Mar. 28, 2024
  • Vol. 3, Issue 3, 036001 (2024)
High-power, narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals
Zhitao Zhang, Hanghang Yu, Sheng Chen, Zheng Li, Xiaobo Heng, and Hongwen Xuan
A 60-mW solid-state deep ultraviolet (DUV) laser at 193 nm with narrow linewidth is obtained with two stages of sum frequency generation in LBO crystals. The pump lasers, at 258 and 1553 nm, are derived from a homemade Yb-hybrid laser employing fourth-harmonic generation and Er-doped fiber laser, respectively. The Yb-hybrid laser, finally, is power scaling by a 2 mm × 2 mm × 30 mm Yb:YAG bulk crystal. Accompanied by the generated 220-mW DUV laser at 221 nm, the 193-nm laser delivers an average power of 60 mW with a pulse duration of 4.6 ns, a repetition rate of 6 kHz, and a linewidth of ∼640 MHz. To the best of our knowledge, this is the highest power of 193- and 221-nm laser generated by an LBO crystal ever reported as well as the narrowest linewidth of 193-nm laser by it. Remarkably, the conversion efficiency reaches 27% for 221 to 193 nm and 3% for 258 to 193 nm, which are the highest efficiency values reported to date. We demonstrate the huge potential of LBO crystals for producing hundreds of milliwatt or even watt level 193-nm laser, which also paves a brand-new way to generate other DUV laser wavelengths.
Advanced Photonics Nexus
  • Publication Date: Mar. 28, 2024
  • Vol. 3, Issue 2, 026012 (2024)
Nonuniform pseudo-magnetic fields in photonic crystals
Bin Yang, Xiaopeng Shen, Liwei Shi, Yuting Yang, and Zhi Hong Hang
The pseudo-magnetic field, an artificial synthetic gauge field, has attracted intense research interest in the classical wave system. The strong pseudo-magnetic field is realized in a two-dimensional photonic crystal (PhC) by introducing the uniaxial linear gradient deformation. The emergence of the pseudo-magnetic field leads to the quantization of Landau levels. The quantum-Hall-like edge states between adjacent Landau levels are observed in our designed experimental implementation. The combination of two reversed gradient PhCs gives rise to the spatially nonuniform pseudo-magnetic field. The propagation of the large-area edge state and the interesting phenomenon of the snake state induced by the nonuniform pseudo-magnetic field is experimentally demonstrated in a PhC heterostructure. This provides a good platform to manipulate the transport of electromagnetic waves and to design useful devices for information processing.
Advanced Photonics Nexus
  • Publication Date: Mar. 18, 2024
  • Vol. 3, Issue 2, 026011 (2024)